IEEE PES ISGT-Asia Conference 5-8 December 2021 isbane Convention & Exhibition Centre | | The program is accurate as at 26 October 2021 and is subject to change | | | | | | | |------------------|--|--|--|--|--|--|--| | | Please note that times are based on Australian Eastern Standard Time (AEST) | | | | | | | | | Sunday, 05 December 2021 | | | | | | | | | Virtual Only | | | | | | | | | Tutorial 1 | | | | | | | | 09:30 -
12:30 | Green hydrogen: integrated system modelling, operation and planning Prof Pierluigi Mancarella Program Leader | | | | | | | | | Energy Systems | | | | | | | | | Melbourne Energy Institute | | | | | | | | | Chair Of Electrical Power Systems | | | | | | | | | Electrical and Electronic Engineering | | | | | | | | 12:30 -
13:30 | Lunch Break | | | | | | | | | Tutorial 2 | | | | | | | | 13:30 -
16:30 | DNP3: SCADA, Clear and Simple Mr Andrew West Regional Technical Director SUBNET Solutions Pty. Ltd. | | | | | | | ## IEEE PES ISGT-Asia Conference 5-8 December 2021 Brisbane Convention & Exhibition Centre and Online The program is accurate as at 26 October 2021 and is subject to change Please note that times are based on Australian Eastern Standard Time (AEST) | | Monday, 06 December 2021 | | | | | |-------|---|---|---|--|--| | | | | l Only | | | | | Session 1 | Session 2 | Session 3 | Session 4 | | | | Data analytics and cyber security 1 | Smart Grids and Active Distribution
Networks 1 | Intelligent Grid Planning, Operation and
Management 1 | Renewable generation and distributed energy resources 1 | | | 09:00 | 27: Ultra-short term wholesale electricity price
prediction through deep learning
Mrs Ana Alvarez | 6: A Novel Detection Method for High Impedance
Fault based Real-Time Modeling and Simulation
Mr Alaa El Hamrawy | 28: A Short-Term Load Forecasting Technique Using
Extreme Gradient Boosting Algorithm
Mr Shafiul Hasan Rafi | 21: The Experimental Assessment of Different PV
Cell Temperature Models Under The Actual Climatic
Conditions for Cd-Te PV Modules
Mr Huseyin Akdemir | | | 09:12 | 35: Real-Time Short-Term Voltage Stability
Assessment using Temporal Convolutional Neural
Network
Mr Ananta Adhikari | 55: Field Trial for Evaluating the Benefits of Using
Lateral Reclosing
Ms Roxanna Partow | 29: Assessing the Risk of Blackout in a Low Inertia
Power System and a Possible Countermeasure
Mr Md. Nahid Haque Shazon | 25: Probabilistic Voltage Stability Assessment
Considering Load and Wind Uncertainties
Mr Mohammed Alzubaidi | | | 09:24 | 98: The Impact of Inverter-based Generators on
Machine Learning-based Transmission Line Fault
Detector
Mr Khalfan Al Kharusi | 69: Sustainable and decarbonized data-center
facilities: A socio-techno-economic discussion
Mr Amin Ziagham Ahwazi | 51: Synthetic Grid Modeling for Real-Time
Simulations
Mr Felipe Arrano-Vargas | 36: Quantifying the resilience potential of
standalone PV and solar-plus-storage for
commercial buildings nationwide
Ms Lucy Groves | | | 09:36 | Grouped Q&A | Grouped Q&A | Grouped Q&A | Grouped Q&A | | | 09:45 | 177: Data-driven indentification of phase
connectivity in power distribution feeders with
electric vehicles charging load
Mr Dilan Chathuranga Naranapiti Hangawatta
Appuhamilage | 130: Electric Vehicle User Behavior Prediction Using
Gaussian Mixture Models and Soft Information
Dr Rebecca Adam | 53: ML-assisted Real Time Congestion Mitigation under Supply-side Uncertainties Mr Praveen Verma | 65: V2G Contribution to Reduction of Renewable
Energy Curtailment by Valley-filling Approach
Mr Shohel Kanai | | | 09:57 | 259: Correlation Analysis of Wind Farms through
Short- term Probabilitic Analysis
Mr Shichen Yang | 135: Modelbased Predictive Control System for
Battery-Trolleybuses in a LVDC Traction Network
Mr Mahjar Wazifehdust | 58: Determination Method of Optimal LFC Capacity
for Massive PV Installation in Conditions of Ramp
Down During a Sunny Day
Mr Keito Nishida | 80: MATLAB/Simulink Modelling of Multi-junction
PV Cell for Conversion Efficiency Improvement using
Maximum Power Point Tracking Method
Dr Narottam Das | | | 10:09 | Grouped Q&A | 170: Reliability Improvement in Renewable-rich
Power Systems with Optimal Placement of Auto-
reclosers
Mr Mushfik Fahim Mir, Ms Sonal Dhole, Dr Kazi
N. Hasan | 76: An Online Estimation Method of Power System
Inertia Using Phasor Measurement Unit
Measurements After a Disturbance Considering
Damping Effect
Mr Yukai Wang | 96: Block Coordinate Decent Robust Bidding
Strategy of a Solar Photovoltaic coupled Energy
Storage System operating in a Day-ahead Market
Mr Mehrdad Aghamohamadi | | | 10:21 | | Grouped Q&A | Grouped Q&A | Grouped Q&A | | | 10:30 | | Mornin | g Break | | | | | Control applications and energy storage 1 | Smart Grids and Active Distribution
Networks 2 | Intelligent Grid Planning, Operation and
Management 2 | Renewable generation and distributed energy resources 2 | | | 11:00 | 20: Robustness Evaluation of a WAMPAC Scheme
Considering Problems with Communication Links
Prof Elizabeth L. Ratnam | 171: Load Balancing in Low-Voltage Distribution
Networks via Optimizing Residential Phase
Connections
Dr Bin Liu | 103: Optimal Operation of Photovoltaic and Micro-
grid Energy Storage System Considering Battery
Health and Electric Vehicle Charge and Discharge
Mr Yongyi Huang | 81: Mitigation of Power Quality Issues with Solar PV Penetration into LV/MV Distribution System Dr Narottam Das | | | 11:12 | 83: Comparative Study of GFM-grid and GFL-grid in
Islanded Operation
Mr Christian Sunjoh | 195: Effective Reactive Power Reduction of Low-
Voltage PV Inverters by Applying Volt-var Control
Method to High-Voltage PV Smart Inverters
Mr Yusuke Yamashita | 116: Enhancement of Long-Term Peak Demand
Forecast in Peninsular Malaysia
Ms Nazaitul Idya Hamzah | 109: Energy Storage Management System for Smart
Home: an Economic Analysis
Dr Zahra Foroozandeh | | | 11:24 | 124: Performance Comparison Between GFM and
GFL Inverters in 100% inverter-Based Power
Systems
Dr Xuan Hieu Nguyen | 224: Deterministic scheduling optimisation for Local
Flexibility Markets in distribution networks
Mr Jokubas Ciurlionis, Prof Phuong Nguyen | 167: A Low-voltage Distribution Network
Configuration Planning by Interval Arithmetic
Mr Hiroki Yokota | 115: Assessing the flexibility of electricity-gas-
hydrogen distribution systems with P2G units
Miss Antonella Maria De Corato | | | 11:36 | Grouped Q&A (9 minutes) | | | 11:45 | 129: Virtual Synchronous Generator based Control
of PV with Reactive Current Control
Mr Abdul Wafi Misbah | 5: Optimizing Smart Micro Inverter GMPPT using
Reconfigurable Control System Algorithm using IoE
Dr Rafat Rob | 173: Installation of a synchronous condenser -
Klamal Solar Farm example
Mr Aleksandar Karisik | 139: Real-Time Hardware-in-the-Loop Distributed
Energy Resources System Testbed using IEEE 2030.5
Standard
Mr Jinsan Kim | |-------|--|---|--|---| | 11:57 | 101: Local Effects of Grid-Forming Converters
Providing Frequency Regulationto Bulk Power Grids
Mr Francesco Gerini, Miss Yihui Zuo | 44: Detection of Falling Conductor in Distribution
Overhead Lines
Mr Chirag Mistry | 194: Optimization Model of Reserve Allocation in
High Penetration Renewable Energy Power System
Miss Mengql LI | 162: Droop-based Grid-forming Function by Type IV
Wind Farm for Fast Frequency Control
Dr Xuan Hieu Nguyen | | 12:09 | 90: A Techno-economic Investigation for the
Application of Second-Life Electric Vehicle Batteries
for Behind-The-Meter Services
Dr Amir Fazeli | 48: Testing System Integrity Protection Schemes Mr Chirag Mistry | 199: Grid Automation Device Management in the
Cloud
Mr Andrew West | 193: Compact model for estimating area-level photovoltaic power generation on facade surface using 3D city model and solar radiation simulation Mr Ryo Nakazato | | 12:21 | Grouped Q&A (9 minutes) | | 12:30 | | Lunch | Break | | | | Control applications and energy storage 2 | Power quality and power electronic applications 1 | Intelligent Grid Planning, Operation and
Management 3 | Condition monitoring and diagnostics of power assets 1 | | 13:30 | 131: Reinforcement
Learning Based EV Charging
Scheduling: A Novel Action Space Representation
Mr Kun Qlan | 77: Reliability Study of a Smart Distribution System with Optimal Sizing and Placement of Capacitors Mr Fernando Salinas-Herrera | 200: Dynamic Economic Load Dispatch Considering
Incentive-based Demand Response
Mr Makoto Ueoka | 54: Transformer Through Fault protection –
challenges and improvements in asset monitoring
for precise predictive maintenance
Mr Venkatesh Rokkam | | 13:42 | 132: Optimal Digital Controller for Power Factor
Correction of the Switching Power Supplies
Mr Emad Roshandel | 146: Mitigating Harmonics from Residential Solar
Photovoltaic Systems
Dr Ha Le | 206: Robust Unit Commitment Based on IGDT
Approach for Microgrid System Operation
Mr Naoki Takahashi | 89: Using Machine Learning to Predict and Avoid
Malfunctions- A Revolutionary Concept for
Condition-Based Asset Performance Management
(APM)
Dr Naser Hashemnia | | 13:54 | 134: Voltage Stability Studies for Distribution
Networks: Assessing Load Dynamics
Ms Ruth Kravls | 157: Analysis of Harmonic Propagations in Albaha
Power Network due to the Implementation of an
MVDC Converter
Mr Thamer A. H. Alghamdi | 208: An Under Frequency Load Shedding Scheme
Based on Zonal Voltage Stability
Mrs Arik Subhana | 97: SFRA based deterioration index for transformer condition monitoring Mr Sreeram V | | 14:06 | Grouped Q&A (9 minutes) | | 14:15 | 138: Assessing the Operational Potential of Pumped
Storage Hydro Generators for Supporting the Grid
Integration of Wind Farms
Ms Maiko Inagaki | 185: Analytical Derivation of Three Phase Inverter
Harmonic Model Parameters
Mrs Samadhi Korale Liyanage | 226: The Economic Value of Improving Forecasting
Accuracy in High Wind Penetrated Power Systems
Miss Wenqlan Yin | 107: Physical asset management in the fourth industry revolution: mapping the literature for condition-based maintenance Prof Behzad Samil | | 14:27 | 175: Robust Power Regulation for Doubly Fed
Induction Generator Based Wind Turbines
Mr Mostafa Karimpour | 188: Power Quality Assessment of Electric Vehicles on the Distribution Networks Dr Anurag Sharma | 231: An intelligent control technique for stability assessment of modern power systems Dr Saheed Gbadamos! | 75: Further insights into I-V and P-V curves of
underperforming photovoltaic modules
Mr Mahantheshalah Gangenapura
Chandrashekharalah | | 14:39 | 178: Modelling of Grid-forming Inverters for Power | 202: Comparison between Ideal and Frequency- | 236: Transmission Development Projects | | | 14:47 | System Applications in DigSILENT PowerFactory Mr Yifan Wu | dependent Norton Equivalent Model of Inverter-
Based Resources for Harmonic Studies
Dr Zhida Deng | 256. Harismission Development Projects Assessment Using Simulated Market Prices Mr Reymark Embate | Grouped Q&A (6 minutes) | | 14:51 | Grouped Q&A (9 minutes) | Grouped Q&A (9 minutes) | Grouped Q&A (9 minutes) | | | 15:00 | Afternoon Break | | | | | | Control applications and energy storage 3 | Power quality and power electronic applications | Intelligent grid planning, operation and management 3 | Energy management, economics and policies 1 | |---------|--|---|--|--| | 15:30 | 189: A Feedforward Neural Network Hydrogen
Electrolyzer Output Regulator for Wind Power
Control with Battery Storage
Mr Miswar Syed | 225: Power Quality Analysis of Colombian Local
Distribution Systems with Photovoltaic Systems as
Distributed Generation. Study Case: IEEE 13 Nodes
System
Mr Luis Felipe Gaïtan Cubides, Mr Juan David
Gomez Ariza, Dr Andrés Emiro Diez | 239: Sizing Transformer Considering Transformer
Thermal Limits and Wind Farm Wake Effect
Mr Zhongtian U | 4: A Mining-Rewarding Mechanism for Peer-to-Peer
Energy Trading Blockchain
Mr Jlawel Yang | | 15:42 | 196: Adaptive Model Predictive-Based Load
Frequency Controller using Unscented Kalman Filter
Mr Wang Weichao | 268: Optimal Allocation of Energy Storage System using PSO for Grid connected Wind system Dr Saravanan R, Dr Sooriyaprabha S | 242: Battery energy storage placement in a solar PV
based distribution system
Ms Priya Nayar | 31: Iterative Double Auction for Local Energy
Trading in Microgrids: The Monash Microgrid Case
Study
Dr Mohsen Khorasany | | 15:54 | 203: Model Predictive Control for Wind Turbines to
Enhance Low Voltage Ride Through capability
Dr Phuong Nguyen | 43: Impedance-based Stability Analysis of Current
Controlled Alternate Arm Converter in dq Frame
Mr Shan Jiang | 249: A Derivation Method for Outage Work Grid
Configurations under Uncertainty of Power Sources
A/Prof Yoshifumi Zoka, Miss Sae Shigemitsu | 78: Call-options in Peer-to-Peer Energy Markets
Dr Jaysson Guerrero | | 16:06 | Grouped Q&A (9 minutes) | Grouped Q&A (9 minutes) | 264: Solar Power Prediction Using Iterative Network Pruning Technique for Microgrid Operation Mr Sho Enomoto | 82: Network-Aware Distributed Electricity Markets:
A Techno-Economic Comparative Study
Ms Carmen Bas Domenech | | 16:15 | 217: Power Quality Control of Hybrid
Wind/Electrolyzer/Fuel-Cell/BESS Microgrid | 113: Modelling Power Loss of High-Frequency
Inductor under Distorted Current Waveforms | | | | 16:18 | Mr Muhammad Maaruf | Mr Guoxing Wang | Grouped Q&A (12 minutes) | Grouped Q&A (12 minutes) | | 16:27 | 228: An LQR-based Robust Voltage Controller for | 118: Study on DC ice melting technology for | | , , , , | | 16:30 | Grid Forming Inverters during Blackstart Mr Francis Chen | distribution lines
Ms Rui Zhang | 16: An Optimal Approach for Selection of Best-fit
Wireless Communication Technology for Indian | | | 16:39 | 250: A Comparative study on state of charge estimation techniques for Lithium-ion Batteries | 143: Observability Analysis for a Single-Phase
Inverter Using Linear State-Space Equations | Smart Grid Installation
Mr Jignesh Bhatt | | | 16:42 | Mr Amit Aryal | Mr Jeanpierre Valentín Acevedo | 244: Communication Network Selection for Various
Advanced Metering Infrastructure User Profiles in | | | 16:51 | Grouped Q&A (9 minutes) | Grouped Q&A (9 minutes) | Indonesia
Ms Rizki Rahayani | | | 16:54 | | | 14: Review of Classification Techniques to Resolve | | | 17:00 | 258: Evaluation of controller autotuning in a wind energy conversion system Mr Augustus Elton | 152: Metal Object Detection of Inductive Power
Transfer Systems Based on a Two-Port Network
Model | Big data Imbalance
Mr Bhavesh Shah | | | 17:06 | MI Augustus Litoli | Mr Bo Long | | | | 17:12 | 71: Comparative Study of GFM-grid and GFL-grid in
Islanded Operation
Mr Christian Sunjoh | 215: Five-Level Inverter With A Combined DC
Voltage Balancing and Fault-voltage Mitigation
Technique for Grid-Connected PV Energy Systems
Mr Kajanan Kanathipan | Grouped Q&A (9 minutes) | | | 17:24 | 273: Power Flow Control for Standalone Solar PV | 235: Diode based HVDC Transmission System to | | | | 17:30 | with Energy Storage System
Mr Yunxun Mo | Supply Energy to Rural Areas [']
Mr Ayaz Hussain | | | | 17:36 | Grouped Q&A (9 minutes) | Grouped Q&A (9 minutes) | | | | 18:00 - | Women in Engineering, Student and Early Career Networking Event (details to be confirmed) | | | | ## IEEE PES ISGT-Asia Conference 5-8 December 2021 Brisbane Convention & Exhibition Centre and Online | The programs is accurate as at 26 October 2021 and subject to change Please note that times are based on Australian Eastern Standard Time (AEST) Tuesday, 07 December 2021 By Divestreamen) Opening Sponsored by Sements Dr Jessica Ban, IEEE PS President Conference Opening Sponsored by Sements) Dr Jessica Ban, IEEE PS President Conference Welcome Prof. Debbie Terry, Vice Chancellor, The University of Queensland Keynote Speaker (sponsored by EPEC) Dr. Arthad Mansoor, PPRI President Morning Tea Break M1. (audio & sildes only) only (audio & sildes only (audio & sildes only (audio & sildes only (audio & sildes onl | I Response Model for der the Influence of batton Rate Bin Mohd Zahid C Quantizer to Load wer System Frequency on |
--|---| | 109:00 109:00 109:00 109:00 109:00 100 1 | I Response Model for der the Influence of batton Rate Bin Mohd Zahid C Quantizer to Load wer System Frequency on | | Opening Plenary & Keynote Session 1 Conference Opening (sonsored by Semens) Dr Jessica Blan, IEEE PES President Conference Welcome Prof. Debble Terry, Vice Chancellor, The University of Queensland Keynote Speaker (sponsored by EPEC) Dr. Arshad Mansoor, EPRI President Morning Tea Break M1 (audio & sildes only) Renewable Generation and distributed energy resources 3 M2 (audio & sildes only) Renewable Generation and distributed energy resources 3 As: Development of Demand Proposed Under the Automated Analysis Tool Dr Leil Liu Dr Leil Liu 39: Dynamic VAr Planning in Large-scale PV Extribed Power Grid Mr Seed Alzahani Mr Seed Alzahani 10:57 As: Harmonic Bistorion Compliance Assessment and Renewable Generators: Euses and Proposed Under Dr Umberto Cells British Prof. Inwel Liu 10:57 As: Harmonic Distorion Compliance Assessment and Renewable Generators: Euses and Proposed Under Dr Umberto Cells Mr Tossporn Surinkeev Dr Umberto Cells 85: Harmonic Balance Method and Its Application in Electrone-chanical Modes Mr Tossporn Surinkeev Mr Studies Albahani 187: Modular Mislewel Series Parallel Converter Prototype Design for Li-ion Battery Management Systems Mrs Dulmini Karubiliske Mr Aldmini Shrieve Mrs Prototype Design for Li-ion Battery Management Control for Suppression of Post Fluctuation Mrs Indira Alcaide-Godinez 11:09 160: Large-Scale Renewable Energy Penetration Impact on Systems Stability Mr Emad Areed Area of Prototype Design for Li-ion Battery Management Systems Mrs Dulmini Karubiliske Mr Aldmini Shrieve Mrs Mrs Dulmini Karubiliske Mr Aldmini Shrieve Mrs Mrs Dulmini Karubiliske 11:20 186: Carge-Scale Renewable Energy Penetration Impact on Systems Stability Mr Emad Areed Area of Prototype Design for Li-ion Battery Management Openation Mrs Indira Alcaide-Godinez Mrs Dulmini Karubiliske Mr Aldmini Shrieve Mrs Mrs Dulmini Karubiliske Mr Aldmini Shrieve Mrs Mrs Dulmini Karubiliske Mr Aldmini Shrieve Mrs Mrs Mrs Dulmini Karubiliske Mr Mulliand Mrs | I Response Model for der the Influence of batton Rate Bin Mohd Zahid C Quantizer to Load wer System Frequency on | | Op:200 Dr Jessica Blan, IEEE PES President Conference Welcome Prof. Debbie Terry, Vice Chancelor, The University of Queensland | I Response Model for der the Influence of batton Rate Bin Mohd Zahid C Quantizer to Load wer System Frequency on | | Conference Welcome | I Response Model for der the Influence of batton Rate Bin Mohd Zahid C Quantizer to Load wer System Frequency on | | Note | I Response Model for der the Influence of batton Rate Bin Mohd Zahid C Quantizer to Load wer System Frequency on | | 10:15 Morning Tea Break | I Response Model for der the Influence of batton Rate Bin Mohd Zahid C Quantizer to Load wer System Frequency on | | M1 (audio & slides only) Renewable Generation and distributed energy resources 3 23: Enabling More Solar in Distribution Network with an Automated Analysis Tool Dr Lei Llu Providing Grid Flexibility Undate Dr Umberto Cella 22: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Tossaporn Surinkaew 22: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Tossaporn Surinkaew 22: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Muhammad Zakwan 23: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Muhammad Zakwan 23: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Muhammad Zakwan 24: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Muhammad Zakwan 25: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Muhammad Zakwan 26: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Muhammad Zakwan 26: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Muhammad Zakwan 26: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Muhammad Zakwan 27: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Muhammad Zakwan 27: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Muhammad Zakwan 27: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Muhammad Zakwan 27: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Muhammad Zakwan 27: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Muhammad Zakwan 27: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Muhammad Zakwan 27: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Muhammad Zakwan 27: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Muhammad Zakwan 27: Effects of Non-stat | I Response Model for der the Influence of batton Rate Bin Mohd Zahid C Quantizer to Load wer System Frequency on | | 10:45 Renewable Generation and distributed energy resources 3 23: Enabling More Solar in Distribution Network with an Automated Analysis Tool Dr Lel Liu Selection of Dr Umberto Cella 23: Enabling More Solar in Distribution Network with an Automated Analysis Tool Dr Lel Liu Selection of Dr Umberto Cella 24: Harmonic Distortion Compliance Assessment and Renewable Generators: Issues and Proposed Update Dr Umberto Cella 25: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Tossaporn Surinkaew 26: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Tossaporn Surinkaew 26: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Tossaporn Surinkaew 26: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Tossaporn Surinkaew 26: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Tossaporn Surinkaew 26: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Tossaporn Surinkaew 26: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Tossaporn Surinkaew 26: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Tossaporn Surinkaew 26: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Tossaporn Surinkaew 26: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Tossaporn Surinkaew 26: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Tossaporn Surinkaew 26: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Tossaporn Surinkaew 26: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Surinkaew 26: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Tossaporn Surinkaew 26: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Surinkaew 26: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Tossaporn Surinkaew 26: Effects of | I Response Model for der the Influence of batton Rate Bin Mohd Zahid C Quantizer to Load wer System Frequency on | | 23: Enabling More Solar in Distribution Network with an Automated Analysis Tool Dr Lei Liu 23: Enabling More Solar in Distribution Network with an Automated Analysis Tool Dr Lei Liu 23: Enabling More Solar in Distribution Network with an Automated Analysis Tool Dr Lei Liu 23: Enabling More Solar in Distribution Network with an Automated Analysis Tool Dr Lei Liu 23: Enabling More Solar in Distribution Network with an Automated Analysis Tool Dr Lei Liu 23: Enabling More Solar in Distribution Network with an Automated Analysis Tool Dr Umberto Cella 24: Effects of Non-stationary Forced Oscillation on Electromechanical Modes Mr Tossaporn Surinkaew 25: Effects of Non-stationary Forced Oscillation on Electromechanical Modes
Mr Tossaporn Surinkaew 26: Application of Dynamic Prototype Design for Li-ion Battery Management Systems Prof Junwei Lu 27: Modular Multilevel Series Parallel Converter Prototype Design for Li-ion Battery Management Systems Mrs Dulmini Karunathilake 27: Fast Frequency Response Effect on RoCof for Networks with Solar PV Integration Mr Mir Toufikur Rahman 27: Forouped Q&A (9 minutes) 28: Development of Demand Providing Grid Flexibility Unconsumers Particle Mr Multilevel Series Parallel Converter Prototype Design for Li-ion Battery Management Systems of Pochype Design for Li-ion Battery Management Systems Mrs Dulmini Karunathilake 27: Fast Frequency Response Effect on RoCof for Networks with Solar PV Integration Mr Mir Toufikur Rahman 27: Forouped Q&A (9 minutes) 27: Fast Frequency Response Effect on RoCof for Networks with Solar PV Integration Mr Mir Toufikur Rahman 27: Forouped Q&A (9 minutes) 28: Dermand Providing Grid Flexibility Unconsumers Parallel Converter Prototype Design for Li-ion Battery Management Systems of Pochype Design for Li-ion Battery Management | der the Influence of
pation Rate
Bin Mohd Zahid
C Quantizer to Load
wer System Frequency
on | | 10:57 Enriched Power Grid Mr Saeed Alzahrani 11:09 160: Large-Scale Renewable Energy Penetration Impact on System Stability Mr Emad Areed 11:21 Grouped Q&A (9 minutes) 11:21 184: Modular High-Frequency High-Power Transformers for Offshore Wind Turbines Mr Weichong Yao 185: Harmonic Balance Method and Its Application in Electrical Power and Renewable Energy Systems Prof Junwei Lu Prototype Design for Li-ion Battery Management Systems Mrs Dulmini Karunathilake Prototype Design for Li-ion Battery Management Systems Mrs Dulmini Karunathilake Prototype Design for Li-ion Battery Management Systems Mrs Dulmini Karunathilake Prototype Design for Li-ion Battery Management Systems Mrs Dulmini Karunathilake Prototype Design for Li-ion Battery Management Systems Mrs Dulmini Karunathilake Prototype Design for Li-ion Battery Management Systems Mrs Dulmini Karunathilake Prototype Design for Li-ion Battery Management Systems Mrs Dulmini Karunathilake Prototype Design for Li-ion Battery Management Systems Mrs Dulmini Karunathilake Prototype Design for Li-ion Battery Management Systems Mrs Dulmini Karunathilake Prototype Design for Li-ion Battery Management Systems Mrs Dulmini Karunathilake Prototype Design for Li-ion Battery Management Systems Mrs Dulmini Karunathilake Prototype Design for Li-ion Battery Management Systems Mrs Dulmini Karunathilake Prototype Design for Li-ion Battery Management Systems Mrs Dulmini Karunathilake Prototype Design for Li-ion Battery Mrs Locked Loops for Networks with Solar PV Integration Mrs India Renewable-rion | wer System Frequency
on | | 11:30 Impact on System Stability Mr Emad Areed Dr Umme Mumtahina Networks with Solar PV Integration Mrs Indira Alcaide-Godinez Mr Mir Toufikur Rahman Mr Mir Toufikur Rahman 11:21 Grouped Q&A (9 minutes) Grouped Q&A (9 minutes) Grouped Q&A (9 minutes) 184: Modular High-Frequency High-Power Transformers for Offshore Wind Turbines Mr Weichong Yao 87: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Dr Umme Mumtahina Networks with Solar PV Integration Mrs Indira Alcaide-Godinez Mr Mir Toufikur Rahman Madelling in Renewable-rich Mr Mir Toufikur Rahman 120: Optimal bidding and scheduling strategies of grid-scale battery energy storage systems in day- ahead Australian electricity market Mr Yunda Xu Mr William (9) Modelling in Renewable-rich Mr Mr Mir Toufikur Rahman Mr Mair Toufikur Rahman Mr Mir | ato | | 11:30 184: Modular High-Frequency High-Power Transformers for Offshore Wind Turbines Mr Weichong Yao 187: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Dr Umme Mumtahina 120: Optimal bidding and scheduling strategies of grid-scale battery energy storage systems in day-ahead Australian electricity market Mr Yunda Xu 164: Analysis of Negative Electory Proportion of Microgrid and Storage Converter Applications Dr Umme Mumtahina 175: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Dr Umme Mumtahina 186: Analysis of Negative Electory energy storage systems in day-ahead Australian electricity market Mr Yunda Xu 187: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Dr Umme Mumtahina 188: Modular High-Frequency High-Power Transformers for Offshore Wind Turbines Mr Weichong Yao 188: Modular High-Frequency High-Power Transformers for Offshore Wind Turbines Mr Weichong Yao 188: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Dr Umme Mumtahina 188: Modular High-Frequency High-Power Transformers for Offshore Wind Turbines Mr Weichong Yao 188: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Mr Yunda Xu 188: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Mr Yunda Xu 188: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Mr Yunda Xu 188: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Mr Yunda Xu 188: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Mr Yunda Xu 188: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Mr Yunda Xu 188: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Mr Yunda Xu 188: A Comparative Study of Phase Locked Loops for Microg | ich Power Systems | | 11:30 184: Modular High-Frequency High-Fower Transformers for Offshore Wind Turbines Mr Welchong Yao 17: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Dr Umme Mumtahina 184: Modular High-Frequency High-Frequency Mr Yanda Storage Converter Applications Dr Umme Mumtahina 187: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Dr Umme Mumtahina 187: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Mr Yunda Xu 188: Modular High-Frequency High-Frequency Mr Welchong Yao 187: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Dr Umme Mumtahina 187: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Mr Yunda Xu 187: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Dr Umme Mumtahina 187: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Dr Umme Mumtahina 187: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Dr Umme Mumtahina 187: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Mr Yunda Xu 187: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Dr Umme Mumtahina 187: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Mr Yunda Xu 187: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Mr Yunda Xu 187: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Mr Yunda Xu 187: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Mr Yunda Xu 187: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Mr Yunda Xu 187: A Comparative Study of Phase Locked Loops for Microgrid and Storage Converter Applications Mr Yunda | minutes) | | an as plus designated in | rtunity for Consumers
ower Systems | | 260: Emerging Frequency Control Mechanisms in IBR Dominated Power Systems Mr Nicholas Maurer Mr Vinh Hao Le 125: Detection of Point-on-wave for Voltage Sags by Hilbert Complex Plane Mr Vinh Hao Le 17: Combining Flexible Loads with Energy Storage Systems to provide Frequency Control Prof Federico Milano 13: An Edge-Lloud Scheduling Reinforcement Learning Mr Customer Pr Mr Jun Li | iority | | 32: Excessive Tap Operation Evaluation Approach for Unbalanced Distribution Networks with High Solar PV Penetration Dr Felfel Bai 32: Excessive Tap Operation Evaluation Approach for Unbalanced Distribution Networks with High Solar PV Penetration Dr Felfel Bai 32: Excessive Tap Operation Evaluation Approach for Unbalanced Distribution Networks with High Solar PV Penetration Dr Felfel Bai 37: Renewable Electricity Enhancing Grid's Stability The Management of Partial String Failure in Multi-string Energy Storage Systems Dr Sarmad Hanif Miss Kenza Mezia Miss Kenza Mezia | nrough Demand Side
ent | | 12:06 Grouped Q&A (9 minutes) Grouped Q&A (9 minutes) Grouped Q&A (9 minutes) | minutes) | | 12:15 Lunch Break | | | Renewable Generation and distributed energy resources 4 Renewable Generation and distributed energy resources 4 Power quality and power electronic applications Demand Response and grid visibility 2 Microgrids, Standalone Po Virtual Power P | | | 13:15 136: Investigating the Performance of Inverter Control Modes in High Solar PV Penetration Scenarios Miss Neha Moturi 119: Integration Of Solid-State Transformer Of Off-Shore Wind Turbine Systems Prof Junwei Lu 119: Integration Of Solid-State Transformer Of Off-Shore Wind Turbine Systems Prof Junwei Lu 133: PMU-based condition monitoring of critical equipment in modern distribution networks Dr Feifei Bai 11: Resiliency-Aware Powr Microgrids using Agent Programming and Ms Farshina Nazr | -based Dynamic
Q-learning | | 197: Impact of Active Current Ramping of Large- Scale PV Plant on the Dynamic Voltage Stability Mr Abdulrhman Alshareef 26: Extraction of Dynamic Frequency Response Characteristics and Modelling of Modern Air Conditioners Dr Richard Yan 271: Higher renewable energy integration in the grid with improved visibility
and control by Medium Voltage distribution PMU data Dr Jalil Yaghoobi 66: Benchmarking Reinfo | d Energy Management | | 13:39 Inages and its Applications Dr Rulyuan Zhang Inages and Its Applications Inages Inage | | | 13:51 Grouped Q&A (9 minutes) Grouped Q&A (9 minutes) Grouped Q&A (9 minutes) Grouped Q&A (9 minutes) | ainties Based on GWO
n | | 14:00 | 227: Resilience Framework and Optimal Scheduling
for DERs Factoring Uncertainties
Ms Lakshita Lakshita | 154: Metal Object Detection of Inductive Power
Transfer Systems Based on a Two-Port Network
Model
Mr Bo Long | 209: On the Optimal Placement of Micro-PMU in
Distribution Networks Considering Phase Strings
Mr Manoj Prabhakar Anguswamy | 149: Generalized Droop Control For Mixed
Impedance Microgrid
Mr Fahad Alshammari | | |-------|---|---|---|---|--| | 14:12 | 254: Curtailment and network voltage analysis
study
Dr Baran Yildiz | 289: Practical and cost-effective voltage support of
low-voltage distribution networks
Dr Mihal Clobotaru | 213: An application of reinforcement learning to residential energy storage under real-time pricing Mr Eli Brock | 159: Optimization of a microgrid for the new post-
covid-19 pandemic energy demand using PV-wind-
biogas in Brazil
Miss Ana Paula Alves Amorim | | | 14:24 | 257: Performance Analysis of Building Integrated
Photovoltaic of High-rise Buildings in Urban Areas
Mr Anirudha Barman, Mr Muiz Mannan | Grouped Q&A (6 minutes) | Grouped Q&A (6 minutes) | 163: Unified Distributed Control of Grid-Forming and Grid-Feeding Converters in DC Microgrids with Average Voltage Regulation and Current Sharing Mr Shelk M. Mohluddin | | | 14:36 | Grouped Q&A (9 minutes) | | | Grouped Q&A (9 minutes) | | | 14:45 | | Afternoon | Tea Break | | | | | Intelligent Grid Planning, Operation and | Smart Grids and Active Distribution | Data analytics and cyber security 2 | Control applications and energy storage 5 | | | 15:15 | Management 4 40: How is occupancy related to energy use in healthcare buildings? Dr Lei Liu | Networks 3 47: Demand-Side-Centric Voltage Regulation in Remote Area Communities Mr Jiakang Yang | 63: Representative Load Profile Extraction and
Baseline Estimation of Residential Consumers
Mr Zhong Xia | 67: Distribution Sysem Emergency Operation using
a Mobile Vehicle-to-Grid Microgrid
Mr Yuki Sato | | | 15:27 | 52: Exploring options for new frequency control
ancillary service markets in the Australian National
Electricity Market
Mr Tim George | 86: Optimal d-STATCOM Placement using
OpenDSS/Matlab
Dr Umme Mumtahina | 137: Broken Neutral Classification through Anomaly
Detection using Features based on Voltage and
Current Observations
Mr Wei Jlan Chan | 92: A Proof of Concept for the Application of Second-
Life Electric Vehicle Batteries as A Stationary Energy
Storage System
Dr Amir Fazeli | | | 15:39 | 94: Intelligent Grid Business Transformation – how
network businesses can navigate a journey of
growing complexity and uncertainty
Ms Alrun Wigand | 108: Examination of Frequency Control of Large
Active Distribution Network using Utility-Scale PV
Unit
Ms Nimisha Upadhayay | 30: Source Authentication of
Distribution Synchrophasors for Cybersecurity of
Microgrids
Dr YI Cui | 128: Characterization and Modelling Lithium
Titanate Oxide Battery Cell by Equivalent Circuit
Modelling Technique
Mr Chethan Parthasarathy | | | 15:51 | Grouped Q&A (9 minutes) | | | 16:00 | 179: Understanding the Impact of Minimum System
Demand on Future System Stability - Queensland
Case Study
Mr Jianing Chen | 117: A Real-time Control Approach to Maximise the
Utilisation of Rooftop PV Using Dynamic Export
Limits
Mr Gayan Lankeshwara | 277: Forecasting Transmission Forced Outages Dr Ebby Thomas | 198: A Comparative Analysis of Centralised vs.
Distributed Battery Energy Storage System in
Providing Frequency Regulation
Mr Hassan Alsharif | | | 16:12 | 218: User-centred design of a grid health virtual reality tabletop for energy networks Dr Stephen Snow | 172: Managing DER in Distribution Networks Using
State Estimation & Dynamic Operating Envelopes
Dr Terese Milford, Dr Olav Krause | 247: Convergence of SCADA Gateway and Industrial
Access Manager for DER Customer Benefit
Mr Marcus Steel | 222: Impact of Battery Energy Storage System Fed
Super Grid Transformer on Distance Protection
Mr Eko Prasetyo | | | 16:24 | 114: Wide Area Monitoring Protection and Control
for enhancing security of emerging power systems
Dr Sudarshan Dahal | 276: From passive distributed solar PV connections to active DER enablement Mr Peter Kilby | 253: Plan2Defend: AI Planning for Cybersecurity in
Smart Grids
Mr Taejun Choi | 230: Energy Storage Systems in Residential
Applications for Optimised Economic Operation:
Design and Experimental Validation
Mr Lampros Zyglakis | | | 16:36 | Grouped Q&A (9 minutes) | | | 16:45 | 61: Artificial intelligence based power grid planning Mr Manjunath D C, Miss Niveditha S | 238: An Active Distribution Network Planning Model
For Distributed Energy Resources and Distribution
Network
Mr Adnan Al-Bukhaytan, Dr Ali Ala-Awami | 88: Cybersecurity for Electricity Utilities: Where to begin? Mr Martin Van Der Linde | 246: Frequency Stability Supports from Battery
Storage with Virtual Synchronous Machine Control
Mr Mehdi Ghazavi Dozein | | | 16:57 | 272: Operational challenges faced and mitigation
measures taken for Renewable Energy integration
in India with the planned transmission system
Mr Rahul Shukla | 245: Dual-Objective MPC of Community Energy
Storage in LV Distribution Feeders with Rooftop
Solar PV
Mr Obaldur Rahman | 248: Convergence of SCADA Gateway and Industrial
Access Manager for DER Customer Benefit
Mr Marcus Steel | 262: Impact of high renewable penetration on
storage requirements for Australia
Mr Raheel Shalkh | | | 17:09 | 279: An Optimization Framework for Power
Infrastructure Planning
Ms Nina Wiedemann | 278: Dynamic closed-loop voltage control under
limited network visibility in a South Australian
distribution network
Dr Julio Braslavsky | 192: Cybersecurity for Power Grid SCADA: DNP3
Secure Authentication
Mr Andrew West | 73: Efficiency of batteries
Mr Mansur Sulaiman | | | 17:21 | Grouped Q&A (9 minutes) | | | 19:00 | Conference Dinner Plaza Gallery, BCEC | | | | | | | | | | | | ## IEEE PES ISGT-Asia Conference 5-8 December 2021 Brisbane Convention & Exhibition Centre and Online | | The program is accurate as at 26 October 2021 and is subject to change Please note that times are based on Australian Eastern Standard Time (AEST) | | | | | |-------|---|--|--|---|--| | | Wednesday, 08 December 2021 | | | | | | | M3 (Live-streamed) | | | | | | 08:30 | Keynote Speaker (Sponsored by Noja Power) Dr Imre Gyuk, US Department of Energy | | | | | | | Role of battery storage in QLD's future energy landscape (Sponsored by Energy Queensland) Mr Peter Price, Energy Queensland | | | | | | 09:45 | | Mornin | g Break | | | | | Leadership Forum
Prof Paul Simshauser, AM, Dr Alex Wonhas, Mr John Cole
Moderator: Mr Mark Paterson | | | | | | 12:00 | | | Break | | | | | M1
(audio & slides only) | M2
(audio & slides only) | M3
(audio & slides only) | Virtual | | | | Condition monitoring and diagnostics of power assets 2 | Energy management, economics and policies 2 | Renewable generation and distributed energy resources 5 | Data analytics and cyber security 3 | | | | 133: Assessment of Effect of Winding Geometry on
Thermal Performance of Retrofilled Transformers
Mr Anupam Dixit | 45: Model Predictive Energy Management System in presence of Dynamic Pricing Dr Rasoul Garmabdari | 219: The Magic Pudding: Delivery model innovation
for hybrid systems
Mr Bart Sedgwick | 148: Weighted Linear Regression based Data
Analytics for Decision Making after Early Failures
Prof Robert Ross | | | 12:57 | 151: Study on Down-sizing Inverter Transformers in
Solar Farms
Mr Xin Zhong | 153: P2P Negawatt Trading: A Potential Alternative
to Demand-side Management
Mr Imran Azim | 232: From Green to Amber: is Australia's National
Electricity Market signalling a financial warning for
wind and solar power?
Mr Nesanthan Srlanandarajah | 155: A Regional Integrated Energy System Load
Prediction Method Based on Bayesian
Optimized
Long-Short Term Memory Neural Network
Mr Ang Xuan | | | 13:09 | 251: XLPE Insulation Degradation Under High
Frequency Stresses
Mr Thanuja Gawasingha Arachchige | 240: On-Demand Batteries as a Peer-to-Peer
Service
Mr Alexander Balson | 287: Minimum demand in the Australian National
Electricity Market: Challenges and Potential
Solutions
Dr Nadali Mahmoudi | 205: Impact on Estimation Accuracy of Training
Data used in CNN-based Solar Irradiance Estimation
Method
Mr Kento Ilda | | | 13:21 | Grouped Q&A (9 minutes) | | | | 297: Vibration profile comparison of grid connected
and battery connected transformers
Mr Jakob Pallot | 50: A Joint Chance Constrained Economic Dispatch
Model Considering Wind Generation and Dynamic
Line Rating
Mr Lel You | 263: Development of A New LSF-based Algorithm
for Optimal Placement and Sizing of Distributed VRE
Mr Nafis Salman Brahmantino | 255: Application of Neural Network to Locate Non-
Technical Losses in Optical Satellite Images
Mr Matheus Mello Jcques | | | 13:42 | 168: Condition Monitoring of Overhead Conductors
in the Australian Electricity Distribution Network
Dr Lakshitha Naranpanawe | 100: An investigation into alternate Causer Pays
methodologies for the recovery of Regulation FCAS
costs in the National Electricity Market
Mr Joel Bullow | 212: Probabilistic intraday forecasting of solar
power using Monte Carlo dropout and deep neural
networks
Mr Oliver Doelle | 261: Correlation Analysis of Wind Farms through
Short-term Probabiltic Analysis
Mr Shichen Yang | | | 13:54 | 174: Predictive End of Life Modelling for Wooden
Utility Poles
Ms Caltlin Nicholas | 282: Integration costs of variable renewables in the
Australian National Electricity Market (NEM): A full
system modelling approach
Mr Gabriel Rioseco | 281: Distributed Energy Resources Participation in
the Australian National Electricity Market as a Price-
taker
Miss Yi Huang | 106: Light-weight and Robust Network Intrusion
Detection for Cyber-attacks in Digital Substations
Mr Mohamed Elrawy | | | 14:06 | Grouped Q&A (9 minutes) | | | 14:15 | 95: A Similarity Measures Based Generic Detection
Method for Waveform Abnormality Identification of
Distribution Network
Mr Junya Luo | 93: Hour-ahead Energy Resource Management for
EV Aggregator Analysing Local Market Impact
Dr Joao Soares | | 169: Time Delay Attack Detection using Recurrent
Variational Autoencoder and K-means Clustering
Mr Shahram Ghahremani | | | 14:27 | 183: Intelligent Digital Assistants, the future of
maintenance for renewable energy
Mr George Mathew | 165: Reward Structures for Prosumers Participating
in Virtual Power Plants
Mr Zizheng Ren | | 204: Vulnerability Assessment of False Data
Injection Attacks on Optimal Power Flow
Dr Rajvir Kaur | | | 14:39 | Grouped Q&A (6 minutes) | 294: Impact Analysis About Introducing CCS for CO2
Emissions Reduction
Dr 金額 周 | | 243: Impact analysis of false data injection attacks
in transactive energy market-based micro-grid
systems
Mrs Rumpa Dasgupta | | | 14:51 | | Grouped Q&A (9 minutes) | | Grouped Q&A (9 minutes) | | Afternoon Break | | Microgrids, standalone power systems, and virtual power plants 2 | Electric Transportation and Impacts on Grid | Demand response and grid visibility 3 | Intelligent grid planning, operation and
management 5 | |-------|--|--|--|--| | 15:30 | 49: Modeling of diesel engines including start-up
process in renewable integrated microgrid
Mr Aobo Zhou | 223: A Feasibility Assessment of Transitioning to
Zero Emission Buses in Queensland, Australia
Dr Dia Adhikari Smith | 145: An Intelligent Event Detection Framework To
Improve Situational Awareness In PMU Power
Distribution Networks.
Mr David Amoateng | 280: Real-Life Fast Frequency Response Provision
from Grid-Scale Solar Farms and Batteries:
Australian Experience
Dr Ahvand Jalali | | 15:42 | 181: Practical experience with addressing minimum
demand and distributed energy resource
intermittency in isolated networks through dynamic
DER integration
Mr VItali Belokoskov | 12: Impact Analysis About Introducing CCS for CO2
Emissions Reduction
Dr 意誠 周, Prof Yosuke Nakanishi | 241: A New Distribution System State
EstimationTechnique Based on Direct Approach in
Networks with Limited Measurements
Mr Amin Mokaribolhassan | 283: SCR and Inertia based Optimization for
SynCons Utilization in Weak Grids with Renewable
Integration
Mr Sajjad Hadavi | | 15:54 | 207: A Model Predictive Control Volt/VAr
Management System for the Froan network
Dr Johannes Maree | 70: EV Aggregator's Potential to Play a Role in
Providing Flexible Source in Japan
Mr Tomo Takahashi | 266: Comparative Investigation for Robust and
Efficient Distribution System State Estimation
Algorithm: Case Study Considering Large Network
Mr Md Naz Niamul Islam | 284: SmartGridToolbox: A Library for Simulating
Modern and Future Electricity Networks
Dr Dan Gordon | | 16:06 | Grouped Q&A (9 minutes) | | 16:15 | 265: Techno-Economic Analysis of On-grid
Transition: A Case Study of Remote Villages in
Sarawak
A/Prof Chin Kim Gan | 102: Study of Unbalance Reduction in 25kV AC
Traction System by Different Transformer
Configurations
Ms Varsha Singh | 275: Novel Bespoke Hardware for Single Board
Computer based Phasor Measurement Unit
implementation
Mr Marcus Steel | 285: SmartGridToolbox: a Library for Simulating
Future and Smart Electricity Networks
Dr Dan Gordon | | 16:27 | 176: Integrating Power Outputs of Distributed
Energy Resources through a Virtual Power Plant for
Providing Frequency Support to the Grid
Ms Sumalya Tasnim | 144: Transactive Energy for Smart Charge:
Coordination of Renewable Generation and EVs
Smart Charging
Mr Sebastian Montes De Oca | 286: Community UPS Battery Power Pool using
quasi-Demand Response method by low-cost IoT
Technologies
Mr Marcus Steel | 288: Intelligence is not enough, smart grids need to conquer value alignment to benefit society Mr Joe Wyndham | | 16:39 | 201: A control strategy for seamless transition of microgrid from grid connected to islanded mode Mrs Radhu Radhakrishnan Nair | 211: An Overview and Prospects of EVs in Pakistan:
A Proposal of RE Based EV Charging Station at
Jamshoro
Miss Maha Ansari | Grouped Q&A (6 minutes) | Grouped Q&A (6 minutes) | | 16:51 | Grouped Q&A (9 minutes) | 191: Modular Approach Towards Battery Swapping:
Time and Technical Parameter Quality Trade-Off
Mr Muhammad Osama Tarar | | | | 17:03 | | Grouped Q&A (12 minutes) | | | | | | M3 (Live- | | | | 17:00 | Awards Presentation | | | | | 17:15 | Closing Address | | | |